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ABSTRACT 

In many chromatographic optimization problems, it is unusual to find only one response that must 
be optimized. Multiple-criteria optimization methods allow the combination of several responses into a 
single figure-of-merit. Origins are traced to Harringtons ’ “desirability functions” and Zadeh’s “fuzzy sets”. 

INTRODUCTION 

In many chromatographic optimization problems, it is unusual to find only one 
response that needs to be optimized. Instead, there are usually several responses that 
must bc considered. Additionally, many of the responses must be expressed as 
intensive properties (i.e., they should not depend on the size or throughput of the 
system [l]) and must be normalized by one or more factors and/or responses of the 
system [2]. In industrial work, for example, resolution per unit time is often of greater 
interest than simply resolution. Similarly, cost is often usefully measured as dollars per 
separation. 

In all of these cases, various ratios, penalties and desirabilities can be used to 
specify quantitative objective functions [3]. 

OBJECTIVE FUNCTIONS 

As stated by Beveridge and Schechter [2], “The aim of optimization is the 
selection, out of the multiplicity of potential solutions, of that solution which is the best 
with respect to some well defined criterion. The choice of this criterion, the objective, is 
therefore an essential step in any study.. . In general, economic criteria should be used, 
although technical forms are common”. 

An objective function is a mathematical relationship expressing the objective in 
terms of system factors and/or responses. Objective functions based on overall 
economic strategies tend to be highly complex [2]. Objective functions based on more 
restricted technical and quality considerations are usually simpler. 

Consider a chromatographic system with two responses: resolution and analysis 
time. If the system is to be optimized, the question arises, of what the objective of the 
separation process is. If the separation is to be presented to an academic audience, the 
objective might be to make the resolution as high as possible and ignore the analysis 
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time. However, if the separation is to be presented to industrial process control 
engineers, the objective might be to minimize the analysis time and not be purists about 
resolution. The sagacious laboratory manager will recognize that improving both the 
resolution and the analysis time (within limits) would capture the attention of both 
audiences. 

An objective function could be used to indicate formally just how resolution and 
analysis time should be combined into a single figure-of-merit to be optimized. For this 
example, the objective function might be simply the sum of the resolution and some 
inverse measure of the analysis time, or, if it is desired to emphasize the resolution, the 
resolution might be weighted twice as much as analysis time. There might also exist 
target values of either or both responses: minimizing the total deviation from these 
target values might be the objective. 

Considerations such as this illustrate an irony about objective functions: they are 
highly subjective. To write a proper objective function for this chromatographic 
example, it would be helpful to have at hand the results of a survey that measures the 
relative desirabilities of both resolution and analysis time for the intended customers. 

OBJECTIVE FUNCTIONS BASED ON RATIOS 

Ratios are often used to construct objective functions. Although ratios are 
simple and attractive, they can lead to unexpected results. This is well illustrated in the 
valuable paper by Smits et al. [4]; the following discussion is based on their paper. 

Fig. 1 shows an incomplete liquid chromatographic separation of live inorganic 
ions. The vertical axis represents detector signal (arbitrary units) which is proportional 
to the concentration of the ions in the eluent. The horizontal axis represents the time 
(arbitrary units) after injection of the sample onto the chromatographic column. In 
many environments, the time required to elute the last ion is important: longer analysis 
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Fig. 1. Incomplete liquid chromatographic separation of five inorganic ions. Computer simulation based on 
ref. 4. 
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times mean fewer samples per day; shorter analysis times will increase the daily sample 
throughput, clearly an economic advantage. 

The resolution/analysis time ratio could be chosen for maximization as the 
objective function. This seems reasonable. As the separation becomes more complete, 
the quantitative measure in the numerator will become larger and the objective 
function will become larger. As the analysis time decreases, the denominator will 
become smaller and again the objective function will become larger. Thus, maximizing 
the resolution/analysis time ratio should lead to improved separations and shorter 
analysis times. 

Fig. 2 shows the separation that might result from the use of this optimization 
criterion. The objective function has been increased, but the separation of ions is now 
worse than when the optimization began, The denominator became small faster than 
the numerator became small, that is, the analysis time decreased faster than the 
resolution degraded. While the resolution was going from bad to worse, the analysis 
time was going from good to better at a faster rate. The net result was a very fast 
“separation” that was almost totally worthless, even though the objective function 
ratio (resolution/analysis time) continued to become larger. 

Objective functions based on ratios must be used with caution. An alternative is 
to avoid ratios by basing the optimization on only one of the components (e.g., 
resolution) and establishing a threshold and penalty function for the other component 
(e.g., analysis time). Another alternative is to combine multiple responses into a single 
measure of performance that expresses the desirability of each combination. 

OBJECTIVE FUNCTIONS BASED ON PENALTY FUNCTIONS 

Practical considerations of sample throughput (e.g., analysis per day) often 
dictate a maximum permissible analysis time. If an analytical laboratory must carry 

Fig. 2. Results of optimization driven by the maximization of the resolution/analysis time ratio. Computer 
simulation based on ref. 4. 
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out fifteen analyses in an 8-h day, then simple calculation suggests a maximum analysis 
time of cu. 30 min [5]. This 30-min maximum analysis time can be considered to be 
a threshold value: an analysis time of less than 30 min might be desirable but would not 
be especially beneficial, whereas an analysis time greater than 30 min would be 
undesirable, perhaps critically undesirable. Thus, an analysis time less than the 
threshold might not figure in any objective function calculations, but analysis times 
greater than the threshold should be taken into account: the objective function should 
be penalized if the analysis time exceeds the 30-min threshold. 

Assuming the threshold represents an upper limit, penalty functions can be 
expressed mathematically is 

p=o for Yj G Yjt (1) 

= dYj - Yd for Yj > Yjt 

wherep is the value of the penalty and yj, represents the threshold value associated with 
the response rj. The nature of&j - yjt) is subjective but usually follows one of three 
well defined forms illustrated in Fig. 3. (Similar equations and figures apply to 
threshold values representing a lower limit.) 

The first type of penalty function is an “infinite wall” illustrated at the top of Fig. 
3: gbj - yjt) = - 00. Thus, violations of the threshold are considered to be infinitely 
bad. This type of penalty function is usually used for critical responses (those involving 
safety, for example). 

A second type of penalty function is illustrated in the middle of Fig. 3: 
gCyj - yjt) = bjbj - yjt), where 6, is a slope or proportionality constant expressing 
the severity of the penalty (bj = -cc is equivalent to the “infinite wall”; bj = 0 is 
equivalent to no penalty). As the response becomes further away from the threshold 
value, the penalty becomes proportionally more severe. Again, the choice of bj is often 
subjective. 

Fig. 3. Possible penalty functions for yj > yj,. 
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The third type of penalty function is illustrated at the bottom of Fig. 3: 
golj - yj,) = bjbj - yj,)“, where n is usually 22. This is a power function that 
expresses the idea that large violations of the threshold value are much more serious 
than small violations. The choices of both bj and n are subjective. This is probably the 
most generally useful type of penalty function and is widely used in many areas. 

DESIRABILITY FUNCTIONS 

It was suggested earlier that an objective function could be used that might 
improve both the resolution and the analysis time. But how can the “apples” of 
resolution and the “oranges” of analysis time be combined? Harrington [6] states the 
problem well: “In nearly all situations requiring human judgement, one is faced with 
a multiplicity of measures which must be balanced one against the other, weighted in 
accordance with their relative importance, compromised where these measures are 
mutually opposing, and variously manipulated to achieve an optimum judgement.. . If 
by some means the several properties could be measured in consistent units, or, 
even better, could be expressed as numbers on a dimensionless scale, then the 
arithmetic operations intended to combine these measures becomes feasible”. 
Although Harrington proposed two specific forms for the “desirability function”, the 
concepts are general and can be merged with concepts from Zadeh’s field of fuzzy logic 
[7-l l] to yield useful objective functions for optimization. 

Lowe [ 121 proposed a simple procedure for forming desirabilities from multiple 
responses. If yju and yjd are measures of the most undesirable and most desirable 
values, respectively, of a response yj, and if it is assumed that the desirability increases 
linearly on going from yju to yjd, then the desirability contributed by this response is 
calculated as 

dj = 0 for Yj < Yju 

for yj > Yjd 

dj = bj - yju)/bjd - Yiu) for Yju < yj < Yjd (2) 

where “c” and “ > ” represent “worse than” and “better than”, respectively. Note 
that dj is unitless and ranges from 0 to 1. 

The concept is illustrated in Fig. 4. Along the left-hand side at the top of the 
figure is a desirability axis ranging from 0 (undesirable) to 1 (desirable). Along the 
bottom of the figure are drawn five response axes, yl - y5 (e.g., resolution, separation 
time, cost). The response axes have undergone zero suppression and scale expansion so 
that their most undesirable values are aligned vertically with the left-hand side of the 
figure and their most desirable values are aligned vertically with the right-hand side of 
the figure. 

Running diagonally across Fig. 4 from left to right is a transformation line that 
maps values of response onto values of desirability. This line is used by reading upward 
from a given value of response and leftward to the corresponding values of desirability. 
For example, a response value of y, = 4.0 corresponds to a desirability value of d5 = 
0.57. Similarly, y4 = 15 becomes d4 - 0.85 andy, = 1.2 becomes dl = 0.15. These 
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Fig. 4. Desirability as a first-order function of response. Undesirable responses at the left; desirable 
responses at the right. 

results obtained graphically are identical with those obtained using eqn. 2: 

dS = (4.00 - 3.70)/(4.23 - 3.70) = 0.57 

d4 = (15 - lOO)/(O - 100) = 0.85 

dI = (1.2 - 1.075)/(1.908 - 1.075) = 0.15 (3) 

Responses that lie to the right of the response ranges shown in Fig. 4 would be assigned 
desirabilities of 1 .OO; responses to the left of the figure would be assigned desirabilities 
of 0.00. 

Harrington’s desirability functions [6] do not assume Lowe’s [12] linear 
(first-order) relationship between response and desirability. Harrington’s two-sided 
desirability function is given by 

dj = exp[ - (IvJIl”l (4) 

where n is a positive number (0 < n < co, not necessarily integral), J$ is a linear 
transform of the response variable, yj, such that ,I$ = - 1 when yj is equal to the lower 
specification limit, yj-, and yj = + 1 when yj is equal to the upper specification limit, 
yj+, and ]yj] is the absolute value of yj (the use of upper and lower specification limits 
comes from concerns about product quality). Any particular value of response, _vj, may 
be transformed into the corresponding yj by the relationship 

_Vi = bj - (,Vj+ + _Yj-)/21/[bj+ - Yj-j/21 

= L2Yj - t_Yj+ + yj-)]/l_Yj+ - yj-) (5) 
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Fig. 5. Harrington’s two-sided desirability function for n = 2. 

which measures the distance of yj from the midpoint between the upper and lower 
specification limits, [bj+ + yj-)/2], in units equal to half the spread between the upper 
and lower specification limits, [bj+ - yj-)/2]. Fig. 5 illustrates this two-side 
desirability function for n = 2. 

For one-sided specification limits a special form of the Gompertz growth curve is 
used: 

dj = exp{ - bp( - yj)l) 

where J$ = 0 at the single spcification limit. The mapping Ofyj onto yj is accomplished 
by choosing two ordered pairs Of Qj, dj) and calculating yj = - ln[ - ln(dJ]. From the 
resulting ordered pairs of bj, r,!), the straight-line equation 

YJ! = bo + blyj 

can be obtained, where b. is the intercept and bl is the slope. Fig. 6 illustrates this 
one-sided desirability function for the ordered pairs (40.0, 0.37) and (70.0, 0.90). 

These desirability functions are well suited to multiple-criteria optimization 
work, but many alternative forms are possible. Some of the most useful versions of 
desirability functions are [free-form] graphical versions such as those shown in Figs. 
7 and 8. Derringer and Suich [13] gave examples. 

OVERALL DESIRABILITIES 

There are many ways in which the individual desirabilities dl - d. can be 
combined. A simple arithmetic average is one example. However, as Harrington [6] 
pointed out, in any realistic situation a “basic premise is this -if any one property is so 



S. N. DEMING 

I 
60 60 100 

Response y1 

Fig. 6. Harrington’s one-sided desirability function for the ordered pairs (40.0, 0.37) and (70.0, 0.90). 

poor that the product is not suitable to the application, that product will not be 
acceptable, regardless of the remaining properties.. . customer reaction to a product is 
based very largely on the less desirable properties of that product because these are the 
focus of potential trouble”. 

The mathematical model analogous to these psychological reactions is the 
geometric mean of the component d values, or 

D = (d,d2.. .d,)l’” (8) 

l___n_yj LLzkzYj 
~-D____yj l-_LL_.j 

Fig. 7. Free-form desirability functions constructed from straight-line segments. 

Fig. 8. Free-form desirability functions with curvature. 
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Fig. 9. Illustration of how D (the overall desirability) varies as a function of two dj values according to eqn. 
8. 

where D is the overall desirability. It is clear that of any dj is zero, the associated D will 
also be zero. Further, D is strongly weighted by the smaller dj values. 

Fig. 9 shows how D varies as a function of two dj values. The nth root (square 
root) relationship is clear in this representation. Note again that if either dl or d2 goes 
to zero, D is zero regardless of the value of the other d. 

Fig. 10 shows individual desirabilities, dl and d2, as functions of two responses, 
yl and yZ. Mapping these desirabilities through eqn. 8 gives Fig. 11, which shows how 
the overall desirability D is affected by the individual responses, yl and y2. Figs. 12 and 
13 suggest that more complicated mappings of responses onto desirabilities give rise to 
more complicated desirability surfaces that might contain multiple optima. 

GENERAL COMMENTS 

The ultimate mapping would be to show D as a function of the system factors [6], 
but to do so presumes a knowledge of the relationships between each yj and all xl 
values. However, because these relationships are not usually known at the beginning of 
a separation project, such mappings are not usually possible initially. 

Fig. 10. Individual desirabilities, dl and d2, as functions of two responses, y, and yz. 
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Fig. 11. Overall desirability, D, plotted as a function of the individual responses, y, and y,, mapped through 
eqn. 8 using the individual desirabilities, d, and d2, shown in Fig. 10. 

Fig. 12. Polymodal individual desirabilities, dl and d,, as functions of two responses, y, and yz, 

Fig. 13. Overalldesirability, D, plotted as a function of the individual responses, yi and y,, mapped through 
eqn. 8 using the individual desirabilities, d, and d,, shown in Fig. 12. 
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Desirability functions have been used before in separation science to improve the 
quality of separations. The work of Glajch and Snyder [14], Laub and Pumell [15], 
Glajch et al. [16], Sachok et al. [17], Morgan and Jacques [18], Deming et al. [19], Otto 
and Wegscheider [20,21] and Cela et al. [22] may be consulted for examples. 
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